Operating Jumbo Cranes on Existing Wharves

TOC Asia 2004

Feroze Vazifdar, S.E.

Vice President Liftech Consultants Inc. *www.liftech.net*

Jeff Florin, P.E. Chief Engineer Virginia Port Authority www.vaports.com

Many ports have older, existing wharves, but need newer/larger cranes to operate the larger ships

Wharf modification is expensive

Ports should investigate using new technology to re-rate the wharf prior to committing money to upgrade

Overview:

Section 1: Operator's Perspective

Section 2: History of Crane Loads on Wharves

Section 3: Wharf Load Factors

Section 4: History of Wharf Rated Capacities

Section 5: Reassessing the Rated Capacity of Existing Wharves

Section 6: Other Considerations

Section One: Owner's Perspective

Jeff Florin, P.E. Chief Engineer Virginia Port Authority www.vaports.com

The Virginia Port Authority (VPA)

>An Agency of the Commonwealth of Virginia

Virginia International Terminals (VIT)

- ➢A Virginia Non-Stock, Non-Profit Operating Affiliate of the Virginia Port Authority
- Operates the Terminals Owned by the Commonwealth

The Port of Virginia offers world-class shipping facilities and is served by more than 75 steamship lines with sailings to over 250 ports in 100 overseas locations.

LIFTECH CONSULTANTS

The Port of Virginia is Currently Ranked:

- ≫8th Largest Container Port in the U.S.
- 3rd Largest Container Port on the East Coast

In the Year 2003 The Port of Virginia Handled:

- 1.65 Million TEUs of Containerized Cargo
- Combined Value of \$28 Billion

- Three Marine Terminals Constructed Over Time
- Terminals Were Constructed by Various Agencies
- Some Structures Date Back to 1918
- Many of the Existing Container Cranes are First and Second Generation (13 Containers Wide)

Portsmouth Marine Terminal Wharf Structure

Portsmouth Marine Terminal PMT Cranes are all 50-ft (15.2-m) Gage

Newport News Marine Terminal VPA Acquired NNMT in 1971.

Completed in 1982

Newport News Marine Terminal NNMT Cranes are All 50-ft Gage, 13 Container Outreach

LIFTECH CONSULTANTS INC

NIT Container Terminal Opened in 1967

Terminal & Wharf Expansion in 1969

Norfolk International Terminals Terminal & Wharf Expansion in 1975 & 1978

Terminal & Wharf Expansion in 1989

South Terminal Renovations

- Significant Portions of the Existing Wharf Are Structurally Obsolete & Require Replacement
- All Existing Berths Are Functionally Obsolete and Require Renovation
 - Wharf Cannot Support Higher Loads of Modern Container Handling Equipment
 - Wharf Cannot Support Modern Container Cranes, 100-ft (30.5 m) Gage
 - Wharf Cannot Provide Deep Water Berths Required for Modern
 Container Shine
- 18 of 86 Container Ships

Terminal & Wharf Renovation in 2003

Continuing Wharf Reconstruction 2004

- Wharf and Cranes at NIT South Required Complete Replacement
- PMT and NNMT Require Modern Cranes
 - Greater Outreach
 - Faster Speeds
 - Higher Loads
- Older Cranes Have Wheel Loads of 12 to 30 kips/ft
- Newer Cranes Have Wheel Loads of 25 to 50 kips/ft
- Need to Accommodate Modern Cranes on Existing Structures

Section Two: History of Crane Loads on Wharves

Ship Evolution

Ship	Containers Rows	Minimum Crane
		Outreach*
		(m)
Panamax	13	38
Post-Panamax	16	46
Maersk	17	48.5
Standard Suez-max	19	54
Malacca-max	24	66
	*Based on:	
		6-m, setback

1-degree list

Crane Evolution (1960 to Present)

Paceco-First Container Crane (1960)

Europeans (Early 1960's)

Japanese (Late 1960's)

Repeated with:

Koreans (1970's)

Others

Chinese (1990's)

Service Wheel Loads

Operating Condition (OP)

- Dead Load + Trolley Load + Lift System + Rated Load +
- 0.5*Impact + Operating Wind Load
- Storm Condition (ST)
 - Dead Load + Trolley Load + Lift System + Storm Wind Load

First Container Crane (1960) Paceco Cranes for Matson Navigation

* Note: 6 wheels / corner

Gage		10.4 m	
Outreach		23.8 m	
Lift Height		17.8 m	
Capacity		22.7 t	
Weight		290 t	
Service Wheel Loads* (t/wheel)			
	OP	ST	
Landside:	11	14	
Waterside :	12	11	

Paceco SL7 (1964)

* Note: 6 wheels / corner

Gage		15.24 m	
Outreach		33 m	
Lift Height		24 m	
Capacity		30.5 t	
Weight		490 t	
Service Wheel Loads* (t/wheel)			
	OP	ST	
Landside:	30	38	
Waterside:	40	31	

Paceco Panamax Modified A-Frame (1970)

* Note: 6 wheels / corner

Gage	30.48 m
Outreach	35 m
Lift Height	25 m
Capacity	40.6 t
Weight	580 t
Service Wheel I (t/wheel)	Loads
OP	ST
Landside: 34	43
Waterside: 41	46

Low Profile Cranes (1970s)

Gage	30.48 m
Outreach	35.2 m
Lift Height	2730 m
Capacity	40.6 t
Weight	550 t
Service Whee (t/wheel)	I Loads*
OP	ST
Landside: 49	39
Waterside 43	17
•	

LIFTECH CONSULTANTS

Post-Panamax Series (mid-1980s to early 1990s)

* Note: 8 Wheels / corner

Gage		30.48
Outreach		m 44.2 m
Lift Height		29 m
Capacity		40.6 t
Weight		910 t
Service Wł (t/wheel)	neel L	oads*
	OP	ST
Landside:	45	54
Waterside	47	45
:	I	ifted

LIFTECH CONSULTANTS

Post-Panamax Low Profile Crane Port Everglades (1991)

* Note: 8 Wheels / corner

30.48 m
44.4 m
32.3 m
40.6 t
1270 t
Loads*
ST
121
83

Suezmax Cranes Virginia Port Authority North (1998)

Notes:

- * 8 Wheels / corner
- ** Boom stows at 19 deg

Gage		30.48
Outreach		m 61.3 m
Lift Height		36.6 m
Capacity		50.8 t
Weight		1110 t
Service Wł (t/wheel)	neel	Loads*
	OP	ST**
Landside:	42	79
Waterside	79	110
:		Liftec

LIFTECH CONSULTANTS

Malaccamax Cranes Virginia International Terminals South (2003)

* Note: 8 Wheels / corner

Gage		30.48 m
Outreach		70.5 m
Capacity	50.8 t	@ 70.5 m
Lift Height	66.0	ጫ 6 3.5 m
Weight	·	1590 t
Service W (t/wheel)	'heel L	.oads*
	OP	ST
LS:	73	120
WS:	95	124
	Ι	Liftec

Future Jumbo Cranes?

Gage	
------	--

Outreach

Capacity

30 to 40 m

73 to 75 m

Lift Height 46+ m

80 to 120 t

Weight

2,000+ t

Service Wheel Loads (t/wheel) OP ST Landside: 90 140 Waterside: 110 150

Malaccamax Crane & Statue of Liberty

TECH CONSULTAN
Crane Comparison: 1st Container Crane & Malaccamax Crane

Crane Comparison: 1st Container Crane & Malaccamax Crane

Crane Weight Evolution

Crane Weight vs Year Manufactured

Crane Service Wheel Loads

Crane Service Wheel Load vs Year Manufactured

Other Reasons for Wheel Load Increases

Crane modifications

Twin and tandem lifts

Dual hoist

Wind loads

Crane Modifications

Modifications can increase weight & wheel loads

Typical modifications:

- Increase lift height
- Increase outreach
- Change gage
- Increase lifted load

Modification Options Geometry Changes

Increasing lift height, Port of Long Beach

Increased windinduced wheel loads

Increased tiedown loads

Slightly increased dead load

No significant increases in operating loads

Modification Options Geometry Changes

Increased outreach

Increased operating wheel loads

Slightly increased wind-induced wheel loads

Slightly increased tie-down loads

Slightly increased

Modification Options Geometry Changes

Rail gage change

Redistribution of dead load (from WS to LS)

Redistribution of moving loads

Increased tiedown loads

Note: Modified from wider gage, shown in red

.. & Tandem Lifts

Dual Hoist

Storm Wind Loads

Older cranes designed to a constant wind pressure for the full height of the crane

Actual wind pressure varies with height

Wind speed mean recurrence interval (MRI) should be considered for structure and tiedowns Wind Velocity Pressure vs. Height

Wind Pressure

48 of 86

Storm Wind Speed: MRI & Probability of Exceeding

May want to reassess stowage hardware for older cranes, based on recent knowledge

Recommend:

50-yr MRI for crane structure

200-yr MRI for tiedowns

MRI	Probability of Excedence (%):		
(yrs)	1 yr	25 yrs	50 yrs
25	4	64	87
50	2	40	64
200	0.5	12	22

Section Three: Wharf Load Factors: One Perspective

Factors Influencing Probability of Collapse

Taken from "Ultimate Load Analysis of Reinforced and Prestressed Concrete Structures," by L. L. Jones:

Applied Load Factor = X * Y, where

X = factors influencing probability of collapse

Y = factors influencing seriousness of the results of collapse

Factors Influencing Probability of Collapse

Group X:

- A. Workmanship (inspection, maintenance, materials)
- B. Loading (control of use)
- C. Accuracy of analysis (type of structure) Note: Group X factors vary from 1.1 to 3.95

Source: "Ultimate Load Analysis of Reinforced and Prestressed Concrete Structures" by L. L. Jones

52 of 86

Factors Influencing Seriousness of the Results of Collapse

Group Y:

D. Danger to personnel

E. Economic considerations

Note: Group Y factors vary from 1.0 to 1.6

Source: "Ultimate Load Analysis of Reinforced and Prestressed Concrete Structures" by L. L. Jones

53 of 86

Example: Combining Factors

Ultimate Load Factor = X * Y

Ultimate Load Factor = 1.3 * 1.2 = 1.56

Source: "Ultimate Load Analysis of Reinforced and Prestressed Concrete Structures" by L. L. Jones

Assessment of Factors

Depending on Engineer's assessment of the A to E factors, the Load Factor can vary.

Load factors can vary from: low of 1.1 (= 1.0 x 1.1) high of 6.31 (= 3.95 x 1.6)

typically \leq 1.6

Source: "Ultimate Load Analysis of Reinforced and Prestressed Concrete Structures" by L. L. Jones

55 of 86

Section Four: History of Wharf Rated Capacities

Working Stress Design

Service Loads Before 1963

FTECH CONSULTAN

Ultimate Load Design

ACI 318

U.S. Standard for Concrete Design

ACI 318-02 ACI 318R-02 Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02) Maci Standard

Reported by ACI Committee 318

american concrete institute P.O. BOX 9094 FARMINGTON HILLS, MICHIGAN 48333-9094

Ultimate Load Design 1963 – 1970

U = 1.5 DL + 1.8 LL

Ultimate Load Design 1971 – 2001

U = 1.4 DL + 1.7 LL

Ultimate Load Design 2002 – Present

U = 1.2 DL + 1.6 LL

Design Methodology Summary

Working Stress Design: Before 1963 Service Load Factors

Ultimate Load Design: 1963-1970 U = 1.5 DL + 1.8 LL 1971-2001 U = 1.4 DL + 1.7 LL 2002-Present U = 1.2 DL + 1.6 LL

History of Design Capacity

* Considering Calculated Strength and Load Factors

Liftech

63 of 86

Section Five: Reassessing the Rated Capacity of Existing Wharves

Reassessing the Rated Capacity of Existing Wharves for Higher Loads

Control group X factors, A to C

Reassessing the Rated Capacity of Existing Wharves for Higher Loads

- A. Workmanship:
 - Materials—Concrete strength testing
 - Piles—Capacity based on load tests
 - Inspection of wharf for cracking, deterioration
 - Proper maintenance and repairs

Pile Load Testing

Destructive Testing:

Cut pile

Jack

Measure resulting deflection

When jacked

When released

For elastic movement: Jack deflection = released deflection

Reassessing the Rated Capacity of Existing Wharves for Higher Loads

B. Loading: Controlling the Load
Weighing crane
Using limiting devices for rated load
Providing overload fuses in cranes

Reassessing the Rated Capacity of Existing Wharves for Higher Loads

C. Accuracy of Analysis: Use state-of-the-art modeling and analysis tools:

Limit state design

Beam on elastic foundation—accurately modeling piles as springs, better understanding of loads and distribution of wharf

3D models—Analyze the entire wharf, not just the crane girders

Strut & tie model (STM) for concrete beam and column design

Beam on Elastic Foundation

Elastic deflection of piles included

Girder may be modeled with cracked section properties.

Pile stiffness may be modeled with uncracked section properties

2-D Analysis

TECH CONSULTANTS

Analyzing the Entire Wharf

71 of 86

Strut and Tie Model

More accurately calculates capacities of structures having significant in-plane stresses or discontinuities.

Ultimate design uses empirical formulae to calculate strength

Strut and tie model converts the ultimate design model into compression and tension elements and provides more realistic results

Strut and Tie: Case Study

Virginia Port Authority, Portsmouth Marine Terminal, Phase 3 LS Girder

Details at Landside Crane Rail Girder

Strut and Tie: Case Study

Virginia Port Authority, Portsmouth Marine Terminal, Phase 3 LS Girder

Strut-and-Tie Model

Strut and Tie

Virginia Port Authority, Portsmouth Marine Terminal, Phase 3 LS Girder

Strut-and-Tie Model

Strut and Tie: Case Study Virginia Port Authority, PMT Case Study

Results:

Increased allowable wheel load in center bays by 35%

No increase in end bay allowable wheel loads

No reinforcement for operating condition required

Minimal modification required for stowed locations

Theoretical Wharf Rated Capacity vs. Year Built: Design

Wharf Rated Capacity

Actual Wharf Rated Capacity vs. Year Built: Design

Actual Wharf Rated Capacity

Wharf Rated Capacity and Applied Crane Loads

Wheel Loads vs. Year Built

Section Six: Other Considerations

Crane/Wharf Interface

Stowage Brackets

Collision Bumpers

Tie-downs

Tie-downs: Pusan Hurricane, 2003

Tie-downs

Rational stability combinations to calculate tiedown forces

Establish load path from crane to wharf ... using the same loading and criteria

Often, the original design is not satisfactory

Most storm-related collapses are from tiedown system failure

Tie-downs

More Information?

This presentation is available for download on our website:

www.liftech.net

Operating Jumbo Cranes on Existing Wharves

TOC Asia 2004

Thank You

Feroze Vazifdar, S.E. Vice President Liftech Consultants Inc.

www.liftech.net

Jeff Florin, P.E. Chief Engineer Virginia Port Authority *www.vaports.com*

ECH CONSULTANT

Values of X Factors

			vg—very goo	od g—	-good f—fa	ir p—
	Characteristic		poor	(Loadi	ng) B =	
			vg	g	f	р
Very Good	ſ	vg	1.1	1.3	1.5	1.7
Workmanship	C -] -	g	1.2	1.45	1.7	1.95
	(Analysis)	f	1.3	1.6	1.9	2.2
	Ľ	р	1.4	1.75	2.1	2.45
Good	٢	vg	1.3	1.55	1.8	2.05
Workmanship	C	g	1.45	1.75	2.05	2.35
	(Analysis)	f	1.6	1.95	2.3	2.65
	Ľ	р	1.75	2.15	2.55	2.95
Fair	ſ	vg	1.5	1.8	2.1	2.4
Workmanship	C	g	1.7	2.05	2.4	2.75
	(Analysis)	f	1.9	2.3	2.7	3.1
	Ľ	р	2.1	2.55	3.0	3.45
Poor	(vg	1.7	2.15	2.4	2.75
Workmanship		g	1.95	2.35	2.75	3.15
	C =	f	2.2	2.65	3.1	3.55
	(, () () () () ()	р	2.45	2.95	3.45	3.95

^{88 of 86} Source: "Ultimate Load Analysis of Reinforced and Prestressed Concrete Structures" by L. L. Jones

LIFTECH CONSULTANTS INC

Values of Y Factors

Characteristic		D = (Personnel)			
		Not serious	Seriou	Very	
E = (Economic Consideration s)	Not serious	1.0	1.2	serious	
	Serious	1.1	1.3	1.5	
	Very serious	1.2	1.4	1.6	

Source: "Ultimate Load Analysis of Reinforced and Prestressed Concrete Structures" by L. L. Jones

89 of 86

Copyright 2004 by Liftech Consultants Inc. All rights reserved.

This material may not be duplicated without the written consent of Liftech Consultants Inc., except in the form of excerpts or quotations for the purposes of review.

The information included in this presentation may not be altered, copied, or used for any other project without written authorization from Liftech Consultants Inc. Anyone making use of the information assumes all liability arising from such use.

