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Wharf Section

Spacing    12’ 6’ 24’ 24’ 24’ 24’ 8’ 24’

H G F E BCD A
124’

The wharf consists of a cast-in-place concrete deck typically 2’2” thick, thickening to 
3’2” at the landside, supported on 24” octagonal prestressed piles at the spacing 
shown.  
The cut-off wall is designed to rotate at the wharf connection and does not provide 
lateral resistance.
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Subsurface Conditions
Layer Material Type Top Elevation Total Unit Weight Friction Angle Shear Strength k Vs G/Gmax - Damping

(ft) (pcf) (degree) (psf) (pci) (fps)
1 New Fill 15 125 36 0 225 550/450 Fill
2 Mixed Fill 13 125 36 0 225 550/450
3 Clayey Sand Fill 10 125 30 0 225 550/450
4 Clayey Sand Fill (below gwt) 6 130 30 0 125 550/450
5 Bay Mud -2 100 0 see note 30 350 + 4d YBM
6 Loose Clayey Sand -15 130 0 250 30 1000 + 5d SAF
7 Medium Dense Clayey Sand -21 135 0 400 30 1000 + 5d
8 Very Dense Sand -25 130 45 0 125 1000 + 5d
9 Dense Clayey Sand -45 140 38 0 125 1000 + 5d
10 Very Dense Sand -60 135 45 0 125 1000 + 5d
11 Dense Clayey Sand -65 140 38 0 125 1000 + 5d
12 OBM -73 115 0 2500 1000 800 + d OBM
13 Rock Dike (above gwt) 10 115 42 0 225 600 + 10d Rock Fill
14 Rock Dike (below gwt) 6 120 42 0 125 600 + 10d

Note: 354 psf at Elevation -2, then increases at 9.4 psf/ft

The soil properties used in our calculations are shown here.
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Probabilistic Response Spectra
5% Damping
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The calculated probabilistic response spectra is shown here for 5% damping
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Piles: W20 @ 2.5” Typical

Typical 24” octagonal prestressed piling was used.  
For confinement, W20 spirals at 2.5” on center was used.
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Pile Strain Limits

50.050.01Prestressing

30.150.05Mild

Steel

2.50.0200.008Confined - In-Ground

1.10.0220.020Confined - Top

1.50.0060.004Unconfined

Concrete

/ Design2500 yr MRI475yr MRI

Collapse CollapseDesign

The strain limits used to calculate the response of the piling is shown here.
For the design earthquake with 475 MRI, standard Port of Oakland strain 
limits are used.  These strain limits are set to limit damage.
For the collapse earthquake with 2500 MRI, strain limits where chosen to 
represent the expected strains at material failure.   
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Concrete

This is a graph of the concrete strains used for the collapse evaluation.
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Steel

This is a graph of the steel strains used for the collapse evaluation.
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Moment Curvature – At Dowels

Using the chosen stress-strain relationships, moment curvatures were 
calculated for the piles.
The shown moment-curvature is for the upper end of the pile with dowels.
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Moment Curvature – Typical

The moment curvature for the typical section of the pile with concrete and 
prestressing strands.
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Pile Response - LPILE

The forces and moments in the piles were calculated using LPILE.
Plastic hinge locations and lengths were determined. 
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FEM Model

A finite element model of a length of wharf was analyzed.
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Wharf Deformation with P-Delta

A pushover analysis including second order effects was performed.
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Pile Moments

The stiffer landside piles provide the most lateral resistance and experience 
the largest moments.
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Pushover by Pile Row

G (4 piles)

H (2 piles)

This graph shows the calculated lateral force and the displacement at the 
wharf deck for the various pile rows.  

The stiffer landside piles initially resist the most load and have the greatest 
lateral capacity.

For each pile row, the reduction in stiffneses occur as follows:
1. Spalling of unconfined shell
2. Plastic hinging near the wharf connection
3. Plastic hinging slightly below the soil boundary
4. Failure due to the pile breaking at the wharf connection and at the in-

ground plastic hinge
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Probabilistic Response Spectra 
5% Damping
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The calculated response spectra for the design earthquakes and collapse 
earthquakes.  
5% damping
Collapse = 2% in 50, MRI = 2500 years
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Pushover curve for 5% damping.  
Notice that at this damping, the seismic demand exceeds the capacity of the 
structure and the structure will collapse.
Fortunately, as the structure is damaged, the damping increases well above 5%.
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Demand versus Capacity
10% Damping
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The same pushover graph but for 10% damping.  
Again, the damage to the structure will result in damping greater than 10%.
This graph is shown to present the significance of damping on the seismic demand 
on the structure.
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Demand versus Capacity
15% Damping
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The same graph shown with 15% damping. 
For this seismic demand, the landside pile rows have formed plastic hinges and are 
severely damaged; however, the structure does not collapse.
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Hysteretic Loop at Displacement of 3 in
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Hysteretic Loop at Displacement of 10 in
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Hysteretic Damping versus 
Displacement

Hysteretic Loop at Displacement of 6 in
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Hysteretic Loop at Displacement of 15.3 in
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So what damping develops in the structure?
The following graphs present the hysteretic loops at various wharf deck lateral 
displacements.
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Port of Oakland 
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Damping - Deck Displacement

Even at small displacements, the damping in the structure is significant. 
At slightly less than 1” of displacement, approximately 10% damping is expected.  
15% damping is attained at deck movements slightly above 1”.  
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Demand versus Capacity
15% Damping

Pushover Analysis Results
 15% Damping Demand
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The point of the previous graph is to illustrate that there will be significant damping 
in the structure at small displacements.   
As shown again, at damping greater than 15%, collapse does not occur.
Based on our calculations, we do not expect collapse due to structural deformations 
in an earthquake with a 2500 year MRI.
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Static & Pseudo-Static Slope 
Stability

Circular Type of Failure Surface with a Yield Acceleration of 0.18G
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Static & Pseudo-Static Stability 
Analysis

Wedge Type of Failure Surface with a Yield Acceleration of 0.28G
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Spectrum Compatible Ground 
Motion
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Acceleration, Velocity, and Displacement time history of one design ground motion 
compatible with response spectrum of 2475-yr return period
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Degradation Curves
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Modulus degradation and damping curves used in quad4m analysis
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Two-Dimensional Site Response 
Analysis
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2D quad4m site response analysis with 4 different failure surfaces
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Average Induced Ground 
Acceleration

Equivalent Acceleration under A_2475 Motion
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Horizontal equivalent accelerations calculated by QUAD4M for each block
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Permanent Displacement for 
Various Slope Geometry

Computed Deformation - Decoupled Analyses - Input Motion (A_2475)
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Calculated permanent deformation vs. Ky
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Static Slope Stability & Newmark 
Deformation

Slope Stability
Circular Failure Wedge Failure

Static FOS 1.8 ~ 1.9 2.9 ~ 3
Yield Acceleration (g) 0.18 0.28

Decoupled Displacements using QUAD4M/Newmark (ft)
Ground Motions Circular Failure Wedge Failure

10% in 50 yrs (~475 yrs) 0.1 0.2
5% in 50 yrs (~950 yrs) 0.2 0.6
2% in 50 yrs (~2475 yrs) 0.5 1

Decoupled Displacements using QUAD4M/Newmark (in)
Ground Motions Circular Failure Wedge Failure

10% in 50 yrs (~475 yrs) 1.5 2.5
5% in 50 yrs (~950 yrs) 2.5 7.5
2% in 50 yrs (~2475 yrs) 6 12

Summary of static and dynamic slope stability analyses
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Wharf Section

Spacing    12’ 6’ 24’ 24’ 24’ 24’ 8’ 24’

H G F E BCD A
124’

The wharf consists of a cast-in-place concrete deck typically 2’2” thick, thickening to 
3’2” at the landside, supported on 24” octagonal prestressed piles at the spacing 
shown.  
The cut-off wall is designed to rotate at the wharf connection and does not provide 
lateral resistance.
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Two-Dimensional Nonlinear 
FLAC SSI Analysis

Kobe Earthquake 2475yr
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Pile deformation pattern by FLAC-2D analyses
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Pile Curvature – Soil Movement
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Pile deflections were calculated using the FLAC analysis for multiple design 
earthquakes with 2500 year MRIs.
Calculated pile deflections for the scaled Kobe earthquake are shown in the 
graph on the left.
The calculated curvatures shown in the right graph were calculated using the 
finite difference method.  
As shown, at several locations, plastic hinges are expected to form in the 
piles.  At only one location is the pile expected to break.
The locations of high strain due to soil movement shown here differ enough 
from the locations of high strain from the dynamic response of the wharf that 
the two deformations are not considered simultaneously. 
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Thank you

This presentation is available for download at www.liftech.net
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