Masterclass on Crane Procurement, Modernization, and Maintenance

TOC Asia 2003

Feroze R.Vazifdar, S.E.

Vice President Liftech Consultants Inc. www.liftech.net

C. Davis Rudolf

Director, Engineering & Maintenance Virginia International Terminals

Masterclass Topics

Section One: Crane Procurement

Section Two: Crane Modernization

Section Three: Crane Useful Life Assessment and Maintenance

Section One: Crane Procurement

Crane Procurement Overview

Evolution of quay crane industry

Demands and restraints

Crane procurement strategies

Options

Case study—tailor made

Mechanical and electrical system choices

AC vs. DC motors and drives

Standard or specialty cranes

Evolution of Container Crane Industry

Paceco 1960

Pioneer

Good quality

Standard features

Evolution

Europeans (Early 1960's)

Japanese (Late 1960's)

Repeated with:

Koreans (1970's)

Others

Chinese (1990's)

Significant impact in tailor-made procurement

Current Environment

Chinese success

Highly competitive pricing

Cost-cutting measures

Cost-Cutting Measures

Sub-contract fabrication

Remote fabrication

Standardize components

Reduced profits

APL Los Angeles cranes Noell, Abu Dhabi

Crane Procurement Overview

Evolution of quay crane industry

Demands and restraints

Crane procurement strategies

Options

Case study—tailor made

Mechanical and electrical system choices

AC vs. DC motors and drives

Standard or specialty cranes

Terminal Demands and Restraints

Terminal demands

Geometry and restraints

Planning for the future

Source: JWD Group

Crane Geometry vs. Ship Size

Typical values	Panamax APL C9	Post Panamax C10	Regina Maersk	New Maersk Standard	Suez-max	Malacca - max		
Containers across deck	13	16	17	22	23	24		
Ship Draft, m	11.6	12.5	13.7	15.2	17.1	21.0		
Ship Beam, m	32.0	39.3	41.8	54.3	50.3	54.9		
Outreach, m	35.8	45.7	51.6	64.2	66.7	69.2		
Setback, m	4.3	4.3	7.6	7.6	7.6	7.6		
Gage, m	15.24	30.48	30.48	30.48	30.48	30.48		
Backreach, m	9.1	15.2	15.2	15.2	15.2	15.2		
Wheels per Corner/ spacing	8 / 1.5							
Out-to-Out distance between bumpers, m	27.0							
Capacity, LT	30	40	50	60	65	65	IECH	

Leg/Rail Setback

Future Planning

Tacoma Crane Concept

Crane Procurement Overview

Evolution of quay crane industry

Demands and restraints

Crane procurement strategies

Options

Case study—tailor made

Mechanical and electrical system choices

AC vs. DC motors and drives

Standard or specialty cranes

Crane Procurement Strategies

Manufacturer selection:

Off-the-shelf

Tailor-made

Hybrid

Off-the-Shelf

Visit operating cranes—2 to 3 vendors

Get input from Operations and Maintenance personnel

Obtain manufacturer specifications

Understand procurement process and quality monitoring effort

Off-the-Shelf Procurement Process

Issue specification outline

Solicit terms

Confirm manufacturer specifications

Negotiate

Implement monitoring effort

Off-the-Shelf Specification Outline *Key Points*

Geometry and capacity requirements Stability against storm winds Quay capacity Power supply Electrical vendors Specific features and components

Off-the-Shelf Limitations

Suitable for private industry Can use different standards Not limited to low bidder Can negotiate

May not be suitable for public agencies

Off-the-Shelf Case Study Red Hook Terminal, NY

Public financing of private industry

Small – medium size

Limited monitoring effort

Tailor-made

Detailed specifications

Confirm technical proposals

Consider bid alternates

Implement quality monitoring program

Specifications & Standards

Standard specifications cover standard cranes, not **container** cranes

Container cranes are unique for many reasons

Eccentric loads

High speeds

Heavy duty cycles

Very high reliability requirements

Standards and specifications must be interpreted by experienced engineers

Detailed Performance Specifications

SPECIFICATIONS FOR CERES HALIFAX TERMINAL CRANES

TECHNICAL PROVISIONS

tor Cerescorp Company Halifax, Nova Scotia, Canada

> McKay International Engineers

FIRST EDITION AUGUST 7, 2000

Start with detailed baseline specifications

Identify specific components

Identify specific needs

Consider Bid Alternates

Require bid for specified crane

Alternate bids for vendor specifications Bidders note exceptions State reasons for exceptions

Only use proven designs

Confirm Technical Proposals

Specifications compliance

Evaluate standards

Evaluate Commercial Proposals

Capital costs

Lifetime costs

Monitoring costs

Quality Monitoring

Verify designs

Verify manufacturing quality

On-site inspection

Verify commissioning

Punch list

Monitoring Costs

Depend on:

Manufacturer location

Manufacturer quality control

Extent of sub-contracting

Existing relationships:

Purchaser – Manufacturer

Manufacturer – Fabricator

Fabricator – Erector

Ту	Typical monitoring costs:					
	Off-the-shelf	0.5 - 1.5%				
	Tailor-made	2.5 – 5.0%				
	(as % of price of a two-crane order)					

Crane Procurement Overview

Evolution of quay crane industry

Demands and restraints

Crane procurement strategies

Options

Case study—tailor made

Mechanical and electrical system choices

AC vs. DC motors and drives

Standard or specialty cranes

Options

Productivity enhancements

Capacity

Trolley type

32.5 LT

Trolley Types

Rope trolley (RTT)

Continuous support

Catenary trolleys

Self-driven option

Machinery on trolley (MOT)

Rope-towed option

RTT

Catenary trolleys

Continuous support

INTERNATIONAL ENGINEERS, INC. LIFTECH CONSULTANTS INC.

Trolley Type Comparison Matrix

	Fleet Thru Rope Towed Continuous	Fleet Thru Rope Towed Cat.Trolleys	Fleet Thru Self Powered	Machinery On Trolley	Rope Towed Machinery On Trolley
Trolley Weight	Moderate	Lowest	Moderate	Highest	High
Trolley Motors	I.	I.	2-4	2-4	I
Trolley Motor Power	Moderate	Moderate	Moderate	Highest	High
Trolley Acceleration	High	High	Lowest (Wheel Slip)	Moderate (Wheel Slip)	High
Trolley Tow Ropes, Tensioner, Sheaves	Yes	Yes	No	No	Yes
Catenary Tow Rope, Tensioner, Sheaves	No	Yes	No	No	No
Hoist Rope Length	Long	Long	Medium	Short	Medium

MOT vs. RTT Crane structural fatigue damage & weight comparison

	Rope Trolley	Machinery Trolley
Trolley weight (tons)	25	90
Moving load (tons): Trolley + Spreader + HB + 65 LT	110	175
Moving load (tons): for Fatigue Damage	80	145
Fatigue damage	1.0	6.0
Crane weight (tons)	1,300	1,600

Trolley Trends

Majority: RTT

Increasingly: MOT

APL, Maersk, Modern Terminals

Europe, Hong Kong, Malaysia, PSA

Crane Procurement Overview

Evolution of quay crane industry

Demands and restraints

Crane procurement strategies

Options

Case study-tailor made

Mechanical and electrical system choices

AC vs. DC motors and drives

Standard or specialty cranes

39 of 204

Procurement Process

Competitive negotiation (RFP vice IFB)

Not locked in to low price

New ideas

- Use a modified performance spec
- Setting a minimum performance standard in CPH
- Let each bidder determine characteristics to attain
 CPH through simulation program

Technical Specification

Section 1

- Proposal
- Schedule
- Standards

Basic characteristics and features

- Capacity 50 LT
- Rail gage 30 M
- Lift height 37 m
- Outreach 22 Containers
- Misc. structural, mechanical, electrical
- Disk containing simulation program

Initial Proposal Results 13 bidders Option A 6 bidders Option B Only 3 of 13 supplied complete info Option A bids Average price for per SHC \$6.4M Option B bids

- Average price for ETGC \$7.6M
- Average differential for ETGC about \$2.0M

Evaluation Criteria		
Experience	> 25	
Quality & Suitability	> 25	
Delivery	> 15	
Price	> 30	
Training/Support	> 5	
Total	▶ 100	

Negotiation Process

Chose 3 bidders with the highest point totals.

Bidders were provided a detailed (guideline) specification for negotiation of technical details.

Negotiation based on <u>exceptions</u> to detailed spec.

North NIT ZPMC Cranes

Modified Performance Spec ?

Yes.

Acted as a screen to let suppliers tell us what they intended to provide.

Guideline spec deviations allowed us to define specifics.

Yes.

Allowed suppliers to see if their recent drive designs would meet our performance standard.

Trolley Types Fleet Thru – Rope Towed – Catenary Support Trolleys 1. Fleet Thru – Rope Towed – Continuous Catenary 2. Support Fleet Thru – Self Powered 3. **Machinery On Trolley** 4. 5. **Rope Towed Machinery On Trolley**

RTT - Fleet Thru with Catenary Trolleys

- Catenary trolleys necessary for long spans
- Provides intermediate festoon support
- Additional sheaves, reeving, tensioners, and trolley machinery

RTT - Fleet Thru with Continuous Support

No catenary trolleys
 Smaller catenaries = more control
 More sheaves = heavier trolley & larger trolley motor

Fleet Thru Self Powered

- Simple reeving
- > No trolley tow ropes or tensioner
- Possibility of wheel slip
- Slower acceleration rates

MOT Machinery on Trolley

- Least amount of reeving
- Heaviest trolley
- Possibility of wheel slip
- Slower acceleration rates
- Small machinery room
- Design for maintenance access is important

Rope Towed MOT

- Simple reeving
- No concern of wheel slip
- Full acceleration rates
- Requires trolley tow ropes and tensioner
- Reduced hoist rope length

Why Consider MOT Crane?

Potential for maintenance expense reduction.

Potential for increased reliability.

Industry trends.

Consider another design prior to wharf design.

Boom Design

MOT Monogirder Boom

Maintenance Comparison

	RTT	MOT
Maintenance time per crane per year	156.5hrs	87.2 hrs
Main hoist rope life	1500 hrs	3000+ hrs
Hoist rope replacement cost	\$21,000	\$5,700

Operator Feedback of MOT

- Trolley speed about the same but acceleration slower than RTT.
- > Not as responsive.
- Spreader skew stability about the same.
- Tendency for trolley to drift when coming off stick.

Power Factor

DC Drives

- Speed Dependent
- Average 0.55 Lag

IGBT Source

- Always Near Unity
- Average ~ 0.99 Lag

DC Drives

- Poor Power Factor Causes Line Dips
- Line Dips can Prevent Regeneration
 and Cause Malfunction

IGBT Source

- DC Bus Capacitance Stores Energy
- Robust to Line Dips, Swells, and Momentary Power Loss

Advantage : AC

Size and Weight

- DC requires only a single stage power conversion
 - Smaller cabinet size
- AC motor sized to have sufficient stall torque at lower speeds
 - Larger motor for similar characteristics

- DC motor has lower rotor inertia
 - More compact
- AC more overall weight

Maintenance

> DC Brush life depends on:

- Commutator temperature
- Brush material
- Vibration
- Humidity
- Corrosives in air
- Can see up to 8000 hours service

AC Motors

- No brush /commutator maintenance
- Better sealed for marine environment for AC motors
- No carbon dust to contaminate bearings

Advantage : AC

Performance

Performance

- Torque & Speed Control very similar with DC digital encoder feedback and AC vector control.
- DC has wider constant torque range Motion.
- Switching times may increase for or increased cost.
- Operating AC motor at rated torque at under half speed could overheat motor.

Accuracy

- Similar level of speed regulationapprox 0.01%.
- Zero speed load holding without brake
 - DC No Drive Limitations
 - AC Drive can have Low Frequency limitations

Advantage : Slightly DC

Cost

- IGBTs and control electronics cost higher for AC.
- **DC** motor cost higher.
- Regeneration cost higher for AC.
- Separate armature and field control preferable for shared drives.
- >2<HP<100 AC more economical.
 - Premium for AC vector control In high HP applications.

Advantage : DC

Other Factors Experience of maintenance staff Commonality of existing equipment **Bottom Line:** • Neither type of drive is inferior Technology is moving AC along faster than DC

• VIT experience - continue DC procurements

Choices of Specialty Cranes:

- Dual Hoist Stationary Platform
- Dual Elevating Platform
- Elevating Trolley Girder
- Others not yet designed or built

Dual Hoist Cranes

ECT Rotterdam

PSA Singapore

Dual Hoist Cranes

Baltimore

Productivity

- A major factor in making the "bottom line."
- Definition is illusive depending on where measured, how measured, and criteria used.
- "Apples to Apples" comparison of port productivity is rare.

Data Accumulation

Dual hoist and single hoist

>15,000 records - 16 fields per record

- Event start and end
- Event type load/discharge/delay
- Crane #
- Operator
- Stevedore
- Ship type
- Delay type

DHC vs. SHC Productivity Comparison

3rd Generation

- Single hoist crane
- Straddle carrier operation
- 50 ft rail gage

4th Generation

- Dual hoist crane
- Chassis / bomb-cart operation
- 50 ft rail gage

5th Generation

- Single hoist crane
- Straddle carrier operation
- 100 ft rail gage

SHC Cycle Time Frequency Distribution

NIT North Cranes by ZPMC

Lifting Mechanism

Possibilities

- Geared mechanical
- Hydraulic
- Electro-mechanical winch

Productivity Influence Summary

> Specialty Crane
 > Delays
 > Operator Proficiency
 > Type of Operation
 > Ship Stowage
 ≈ 3-5 CPH
 ≈ 3-5 CPH
 ≈ 3-5 CPH
 ≈ 3-5 CPH

Estimated Cost Summary

	Annualized Initial Cost 20 years at 8%		Operating Labor Cost @ \$45 per hour		Maintenance Cost Labor and Parts		Energy Cost @ \$0.10/KWHR		Total Annual Cost 3000 hrs per year		Cost per Container based on 3000 HRS at 70% of Mode	
SHC 5th Gen	\$	636	\$	270	\$	92	\$	30	\$	1,028	\$	11.13
ETDC	\$	754	\$	270	\$	120	\$	40	\$	1,184	\$	11.51
DHC Fixed	\$	835	\$	337	\$	180	\$	61	\$	1,413	\$	14.32
DHC Elevating	\$	967	\$	390	\$	194	\$	67	\$	1,618	\$	16.05

Note: Numbers in 000's except last column

Bottom Line

Just the procurement of a specialty crane does not necessarily guarantee large leaps in productivity. Several factors having weights of the same order of magnitude influence ship operation productivity.

Crane Procurement Overview

Evolution of quay crane industry

Demands and restraints

Crane procurement strategies

Options

Case study—tailor made

Mechanical and electrical system choices

AC vs. DC motors and drives

Standard or specialty cranes

Conclusions

Liftech

Conclusions

Section One: Crane Procurement

Highly competitive market

Better and cheaper cranes

Can use off-the-shelf or tailor-made

Requires quality monitoring

More diligence by purchaser

Trend: Tailor-made

Section One: Crane Procurement

End, Section One ... Scheduled Coffee Break

P

Section Two: Crane Modernization

Crane Modernization Overview

Used vs. new cranes

Modification options

Relocation

Costs

Awarding the job

Conclusions

Liftech

Crane Modernization

Why modernize?

Major changes in the shipping industry
Competition for new tenants
Response to economic climate
Relocation within countries and across continents

Modernization vs. new

Lower cost and shorter delivery duration Obsolescence—more myth than reality

Used vs. New Cranes Background data

Manufacturers: Hitachi, IHI, Kocks, Kone, Krupp, Liebherr, Mitsubishi,

MES, Morris, Noell, Paceco, Star, ZPMC

Vintage	1965 to 1985	1996 to present 50 to 65 LT (twin lift)				
Capacity	30 to 40 LT					
Rail gage, m	10-30.5	15.2-36.5				
Outreach, m	29-38	53-69				
Backreach, m	8-24	9-16				
Clearance between legs, m	12-14	16-19				
Lift height	18-27	32-37				
Hoist speed, m/min	22-53	60-90				
Trolley speed m/min	120-150	240				
130 of 204		Lifte				

Crane Modernization Overview

Used vs. new cranes

Modification options

Relocation

Costs

Awarding the job

Conclusions

Liftech

Modification Options

Geometry changes

Performance changes

Operational changes

Retrofits

Geometry Changes

Increase lift height

Increase outreach

Rail gage change

Miscellaneous changes

Increasing lift height

Increasing lift height

LIFTECH CONSULTANTS INC

Increased lift height and gage change

LIFTECH CONSULT

Increased outreach

Increasing outreach

Rail gage changes

Increase backreach

Increase portal beam height

Increase clearance between legs

Decrease overall gantry out-to-out

Other Modification Options

Performance Changes

Operational Changes

Electric Drive Retrofit

Typical Retrofit

Crane Modernization Overview

Used vs. new cranes

Modification options

Relocation

Costs

Awarding the job

Conclusions

Liftech

Relocation

Seattle to Panama

Crane Modernization Overview

Used vs. new cranes

Modification options

Relocation

Costs

Awarding the job

Conclusions

Liftech
2001 Cost Guidelines Geometry Changes

Modification	Dimensions	USA/Europe Cost (\$1,000s)	Asia Cost (\$1,000s)
Increase lift height	6 m	750	500
Increase outreach	2 m	100	75
	4 m	200	150
	6 m	650	500
	9 m	750	600
Increase backreach	4-5 m	150	100
Increase portal height	I-2 m	100	75
Widening leg clearance	0.3 m	35	35
	l m	300	250
Decrease gantry out-to-out		250	200

2001 Cost Guidelines Performance Changes

Modification	USA/Europe Cost (\$1,000s)	Asia Cost (\$1,000s)
Increase rated capacity (25% increase)	250	175
Increase main hoist speed, replace drives with digital, replace controls	1,200	700 to 900
Upgrade gantry braking	120	60
Install snag protection	120	120 to 250

2001 Cost Guidelines Operational Changes

Modification	USA/Europe Cost (\$1,000s)	Asia Cost (\$1,000s)
Convert shore power to diesel power	350	280
Convert diesel power to shore power	180	90
Install man-lift	180	100
Replace operator's cab	60	40 to 50

2001 Cost Guidelines Relocation

Modification		USA/Europe Cost (\$1,000s)	Asia Cost (\$1,000s)
Change rail span		350	250 to 350
Relocate two cranes	5 km 1000 km 5000 km	200 500 1000	150 350 to 400 700 to 800

Crane Modernization Overview

Used vs. new cranes

Modification options

Relocation

Costs

Awarding the job

Conclusions

Awarding the Job

I. Original crane manufacturer

Advantages

Detailed performance specs not required May save time, since no bidding required Manufacturer has all drawings and design expertise

Disadvantages

Crane manufacturer may not be interested Not equipped for major on-site work May not own jacking equipment Cost may be high

Awarding the Job 2. Turnkey project with contractor

Design/build contract through negotiation or bidding Pre-qualification and selection based on experience Contractor assumes product liability Substantial engineering by contractor Requires knowledgeable crane designers May cause contractor to leave large contingency in price

Awarding the Job

3. Retain crane design professionals

All contractors bid on same package

Owner helped through bidding and construction review by engineer

Costs typically lower

Conclusions Section Two: Crane Modernization

Used vs. new cranes

Modification options

Relocation

Costs

Awarding the job

Section Two: Crane Modernization

End, Section Two ... Scheduled Break

Section Three: Crane Useful Life Assessment and Maintenance

Useful Structural Life Assessment Overview

Owner's Options

Predicting Life

Extending Life

Case Study

Useful Structural Life

Definition—Duration for operating the crane with a tolerable risk of fatigue failure

Unrelated to corrosion and mechanical/ electrical failure or obsolescence

Structural maintenance programs extend useful life

Useful Structural Life Depends On

Initial structural design

Load and cycle spectra

Structural details

Manufacturing quality

Operations history

Structural maintenance

You Have an Older Crane-What are Your Options?

Do nothing—ignore risks

Useful structural life assessment

Prolong life with inspection and repair

Reduce use and/or relocate

Dispose

Structural Deterioration

Corrosion

Fatigue crack growth

Overload / damage / abuse

Predicting Useful Structural Life

Fatigue phenomenon

Fatigue evaluation

Useful life analysis

Fatigue Crack Growth

Stress range

Number of cycles

Detailing

Workmanship and quality control

Cleavage fracture rather than slip lines.

Number of Cracks Accelerates with Use

Number of Cracks

Number of Cycles

Crack Occurrences and Maintenance

- Poor initial details repaired
- More attention during repair
- Threshold stress range

Steps of a Useful Life Analysis

Structural condition survey

Useful life estimate before inspection

Inspection program and structural inspection

Useful life estimate after inspection

Risk of Failure

Current design criteria

1 in 50

Adding structural maintenance program 1 in 1,000

Extending Life

Determine if economic to continue to operate crane

Repair and refurbish crane

Plan for future inspections and repairs

Crane Maintenance

General

Structural

Mechanical & Electrical Considerations

Crane Availability Estimates*

Breakdown repair time Aggressive target: 0.5%

Minimum target: 2%

Preventive maintenance and periodic inspection time Typically 16 to 30 hrs per wk Depends on crane age and usage
Routine servicing time Typically 4 to 8 hrs per wk
Availability

*Based on typical 2,000-3,000 hrs operation per year 169 of 204

Preventive Maintenance Includes

Weekly pre-operational checks to verify

Operations of all motions

Limit switch settings

Wire rope and spreader adjustments

Periodic Frequent Maintenance

Wire rope

Brake adjustment and testing

Limit switches

Spreaders

Availability*

$$Total Availability = 1 - \left(\frac{Hrs_{Breakdown} + Hrs_{prev. maint.} + Hrs_{routine service}}{7200}\right)$$
$$Operational Avail. = 1 - \left(\frac{Hrs_{Breakdown} + Hrs_{prev. maint.}}{7200}\right)$$
$$Breakdown Avail. = 1 - \left(\frac{Hrs_{Breakdown}}{7200 - Hrs_{prev. maint.}}\right)$$

*Based on a typical 300-day work year = 7200 hrs/yr

Replacement and Spare Parts

Inventory

Availability in case of emergency

Interchangeability

Components available in country

Crane Maintenance

General

Structural

Mechanical & Electrical Considerations

Structural Maintenance & Inspection Program

Inspection manuals

Details to be inspected

Classification: FCM or NFCM

Detail location identification

Inspection method: VT, MT, UT, RT

Inspector's qualifications

Reporting procedures

Repair procedures

Improving details

Inspection frequencies

Liftech

Inspection Program: Typical General Arrangement

Inspection Program: Typical NDT Manual Pages

herb Erners, Paparietica) Webbelly 201 July 2015 Instal (2015) 2 (2015) Arb M72 IBM Art. (2/11/2011) 4 (2.19) FM

Inspection Program: Typical NDT Manual Pages

832-5606

(510)

Liftech

V Red-Does Description Method VI 101 Adv. 2017 Januard 2018, 7 (2017) Aut 2027 Benchman, 1(127) 203, 516 Del 1981

Lithech/Provers Presentations/Minkins/FV TOC Avia 2003/Images/V1343 2 0065/dun/INSP RM-ph.dwg 2/12/2003 4:06 PM PMM

All Cracks Need to be Repaired

Cracks occur at:

Poorly designed details

Poorly fabricated details

Corrosion-related damage

Important to not only repair crack, but also to improve the detail

Engineering judgment is required

Unstable Fatigue Crack

Reinforcing Plates

181 of 204

Rejuvenation

If cracks are repaired:

Detail at repaired crack becomes rejuvenated

Repaired joint is at least as good as new

Inspection Frequency *More bang for your buck*

Not all joints need inspection at the same interval:

More frequent inspection:

Fracture critical members (FCMs)

Joints with higher stress ranges

Less frequent inspection:

Non-fracture critical members (NFCMs)

Joints with lower stress ranges

Joints in secondary members

183 of 204

Example Inspection Intervals

Component	Fracture Critical?	No. of Moves	Interval (Years)
Trolley Girder Hanger	Yes	300,000	3
Forestay	Yes	600,000	6
Lower Legs	Νο	1,200,000	12
Portal Beam	No	2,400,000	24

Case Study: Eight Quayside Cranes

Three Manufacturers

Purpose of Study

Establish a structural maintenance program

Inspection manual

Repair procedures

Structural inspection intervals

Estimate remaining useful life

Recommendations to improve remaining useful life

Results

Number of Cracks				
Crane Estimate Before NDT		Detected by NDT		
	Inspection	Inspection		
Расесо	33 to 38	7 to 13		
IHI	3 to 8	2 to 11		
Hitachi	0 to 1	2 to 3		

Results

Useful Life Estimate (Number of Years)					
Crane	Before	After NDT	After Cracks		
	NDT	Inspection	Repaired		
	Inspection				
Расесо	Oto I	6 to 11	to 6		
IHI	8 to 13	6 to 18	10 to 17		
Hitachi	15 to 17	8 to 11	13 to 16		

Conclusions to Case Study

Findings compared well with the initial estimates

Useful life extended with inspection and repair

Helped client decide what to do

Maintenance Overview

General

Structural

Mechanical & Electrical Considerations

190 of 204

Sway Control

Hydraulic

- Requires spreader to trolley fleet angle
- Adds to hydraulics maintenance load
- Reasonably effective

Electronic

- Most manufacturers include it in drive
- Operators perceive that they can do better
- Requires little or no maintenance

Operator

- Most effective for controlled periods
- Affected by fatigue
- No maintenance

Snag Device

Hydraulic

- Most effective
- Usually combined with spreader micro-motions
- Complex but requires minimal maintenance

Crushable Element

- Simple concept
- Easy to maintain
- Expensive and marginally effective due to preliminary crushing

Hydraulic Snag Device

Spreader Trim, List, and Skew

Spreader Cable Reel or Cable Tub?

- Speeds of recent cranes too high for tub
- Gravity cable installed as back-up with reduced speed
- Problems have been with shock absorber more than drive

Festoon

Problems with standard festoon:

- Controlling shock from bumping saddles
- Whipping of cables in wind
- Maintenance of wheels
- Increasing size with machinery on trolley cranes

Energy Chain System

- Simple, easy to maintain
- Impervious to wind
- Works in ice and snow

Electronics Troubleshooting

Maintenance Operating Station

- Start Crane
- E-Stop
- Boom up/down
- Spreader extend retract
- Motions in slowdown
 - Gantry
 - Hoist
 - Trolley

Conclusions

Section Three: Crane Useful Life Assessment and Maintenance

Useful Structural Life Assessment

Maintenance

202 of 204

Masterclass Conclusions

Section One: Crane Procurement

Section Two: Crane Modernization

Section Three: Crane Useful Life Assessment and Maintenance

Masterclass on Crane Procurement, Modernization, and Maintenance

TOC Asia 2003

Thank You

Feroze R.Vazifdar, S.E.

Vice President Liftech Consultants Inc. www.liftech.net

C. Davis Rudolf Director, Engineering & Maintenance Virginia International Terminals

Copyright 2003 by Liftech Consultants Inc. All rights reserved.

This material may not be duplicated without the written consent of Liftech Consultants Inc., except in the form of excerpts or quotations for the purposes of review.

The information included in this presentation may not be altered, copied, or used for any other project without written authorization from Liftech Consultants Inc. Anyone making use of the information assumes all liability arising from such use.

