Crane Useful Life Assessment and Maintenance

TOC Asia 2005

Feroze Vazifdar, S.E.

Vice President Liftech Consultants Inc. www.liftech.net

Forestay Failure

Boom Hanger Failure

Trolley Support Failure

4 of 28

Overview

Failures do occur! Fatigue design philosophy Useful life analysis & structural maintenance Repair examples

Fatigue Design Philosophy

Safe Life Design

Damage Tolerant Design

Cranes

I in 50 without inspection I in 1,000 with inspection

How to Minimize the Effect of Fatigue Cracks

- Proper design
- Proper material selection
- Proper fabrication and quality control
- **Proper attachments**
- Structural maintenance program

Fatigue Crack Growth

Stress range

Number of cycles

Detailing

Workmanship and quality control

Cleavage fracture rather than slip lines.

You Have an Aging Crane: What are Your Options?

Do nothing and ignore risks

Useful structural life assessment

Prolong life with inspection and repair

Reduce use and/or relocate

Dispose

Liftech

Steps of a Useful Life Analysis

Structural condition survey Useful life estimate before inspection Inspection program Structural inspection Useful life estimate after inspection

Structural Condition Survey

- Look for
 - Distress
 - Suspect details
 - Attachments
- Make photo record for the NDT inspection

Useful Life Estimate Before Inspection

Calculate cumulative damage to date

Estimate remaining cumulative damage for expected operation

Convert to useful life

Owner can decide best course of action

Useful Life Analysis: Example

Description	Design	Crane 1	Crane 2	Crane 3
Loads	tons	tons	tons	tons
Trolley Wt	13.0	13.0	13.0	13.0
Head block	3.1	3.1	3.1	3.1
Spreader	12.0	12.0	12.0	12.0
Rated Load	40.0	40.0	40.0	40.0
Design Fatigue Load	30.0	30.0	30.0	30.0
Avg Container Wt (root mean cubed)	30.0	30.0	20.0	40.0
Years in operation (Through 2003)	15.0	15.0	15.0	15.0
No. of cycles	1,500,000	1,500,000	2,250,000	1,500,000
cycles/year	100,000	100,000	150,000	100,000
Predicted future usage rate (cycles/year)	100,000	150,000	150,000	100,000
Des cycles/yr	100,000	100,000	100,000	100,000
Cumulative Damage				
R (act)	2.942E+11	2.942E+11	2.504E+11	4.737E+11
R(des)	3.922E+11	3.922E+11	3.922E+11	3.922E+11
Cumulative damage ratio R	0.750	0.750	0.638	1.208
Predicted No. of fatigue cracks /crane				
No. of std deviations below mean	2.554	2.554	2.865	1.636
Reliabity	0.9947	0.9947	0.9979	0.9491
No. of joints/crane	1500	1500	1500	1500
Predicted fatigue cracks/crane	7.9	7.9	3.1	76.4
Predicted Fatigue Cracks / Crane	5 to 10	5 to 10	0 to 5	60 to 90
Structural Useful Life in present condition				
Years in operation	15.0	15.0	15.0	15.0
Remaining structural life = $Years_{left}$ (predicted rate)	5.0	3.3	7.2	-4.2
Estimate of remaining useful life	5	3 to 4	7 to 8	zero
prior to NDT inspection				Types 1

Structural Maintenance & Inspection Program

Inspection manuals

Details to be inspected

Classification: FCM or NFCM

Inspection method: VT, MT, UT, RT

Acceptance criteria

Inspector's qualifications

Reporting procedures

Inspection frequencies

14 of 28

Inspection Program: Typical General Arrangement

Inspection Program: Typical NDT Manual Pages

Inspection Frequency

Not all joints need inspection at the same interval

More frequent inspection:

Fracture critical members (FCMs)

Joints with higher stress ranges

Less frequent inspection:

Non-fracture critical members (NFCMs)

Joints with lower stress ranges

Joints in secondary members

Example Inspection Intervals

Component	Fracture Critical?	No. of Moves	Interval (Years)
Trolley Girder Hanger	Yes	300,000	3
Forestay	Yes	600,000	6
Lower Legs	No	1,200,000	12
Portal Beam	No	2,400,000	24

This example is not suitable for all cranes.

Structural Inspection

Inspect and compare predictions with findings

Repair procedures

Useful Life Estimate After Inspection

Review inspection reports

Identify fatigue cracks

Compare identified cracks with prediction

Reevaluate the reliability and useful life based on inspection

Owner can decide best course of action

Fatigue Crack Repairs Example: Repair Original Detail

Toe Crack in weld connection between Backstay Connection Plate and Top Flange of Girder Crane No.3

Fatigue Crack Repairs

Example: Modify and Repair Detail

Forestay Failure Profile

Modified Detail: Stress Analysis

LIFTECH CONSULTANTS

25 of 28

Crack Occurrence and Maintenance

racks **Original Crane** Without Repair **Design Life**" Number of **Envelope of Inspect** and **New Crack** Repair Frequency (Typical) Number of Cycles

- Poor initial details repaired
- More attention during repair
- Threshold stress range

Summary

Fatigue cracks will occur and can be catastrophic if not repaired

Cracking can be controlled with proper design, workmanship, quality control, and a proper structural maintenance program

Crack repairs are inexpensive

Useful life analysis can be used to predict future cracking so the owner can decide the best course of action

Crane Useful Life Assessment and Maintenance

TOC Asia 2005

Thank You

This presentation is available for download

www.liftech.net

Feroze Vazifdar, S.E. Vice President Liftech Consultants Inc.

Liftech Consultants Inc. file data:

N:\Papers & Presentations\!Working\TOC 2005_FV & PWM\03-pres pwm 2005-03-28_web version.ppt

Copyright 2005 by Liftech Consultants Inc. All rights reserved.

The information included in this presentation may not be altered, copied, or used without written authorization from Liftech Consultants Inc. Anyone making use of the information assumes all liability arising from such use.

Quality Assurance Review:

Author:	Feroze Vazifdar
Editors:	Michael Jordan, Patrick McCarthy, and Yuo-Fong Chang

Principal: Feroze Vazifdar

29 of 28