AAPA Crane and Terminal Workshop

November 6, 2001 – Oakland, CA

Mechanical / Electrical

Larry Wright & Bob Slater Mechanical Engineers McKay International Engineers

Mechanical / Electrical Topics

- Trolley Types
- Primary Systems
- Drives and Controls
- Power Supply
- Safety Features
- Productivity Enhancements
- Design & Manufacturing
- Component Suppliers

Trolley Types

- Fleet Thru Rope Towed Catenary Support Trolleys
- Fleet Thru Rope Towed Continuous Catenary Support
- Fleet Thru Self Powered
- Machinery On Trolley
- Rope Towed Machinery On Trolley

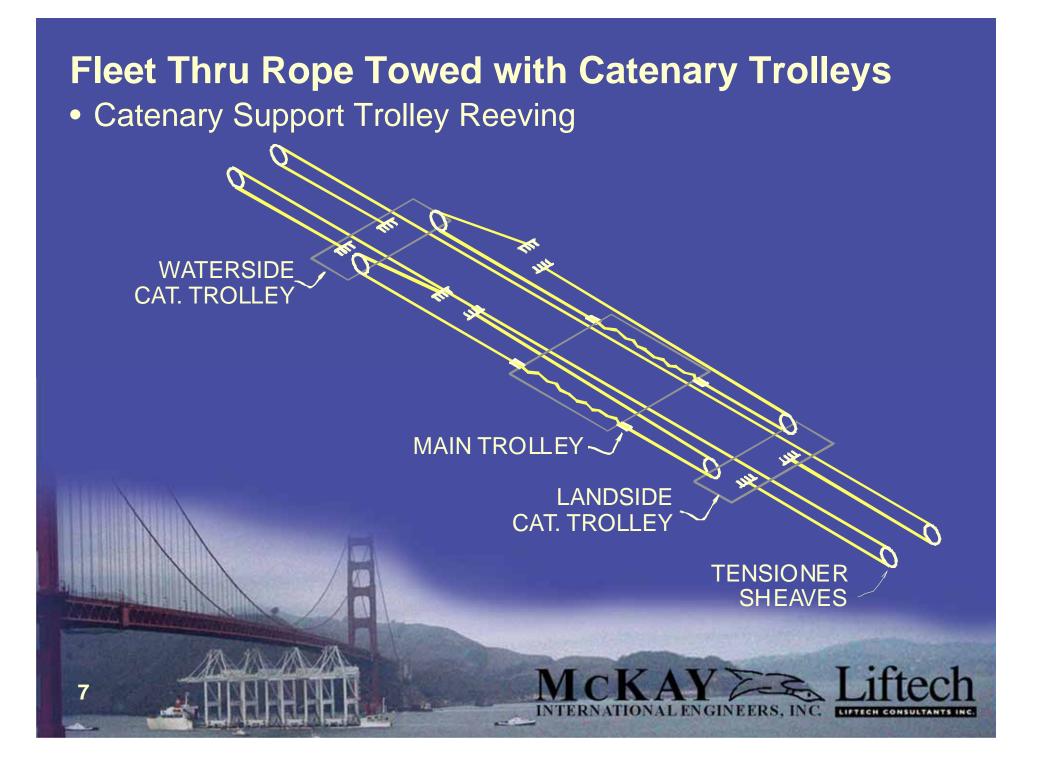
Fleet Thru Rope Towed with Catenary Trolleys

- Catenary trolleys necessary for long spans
 Provides intermediate festoon support
 - Additional sheaves, reeving, tensioners, and trolley machinery

Fleet Thru Rope Towed with Catenary Trolleys

• Main Hoist Reeving

5

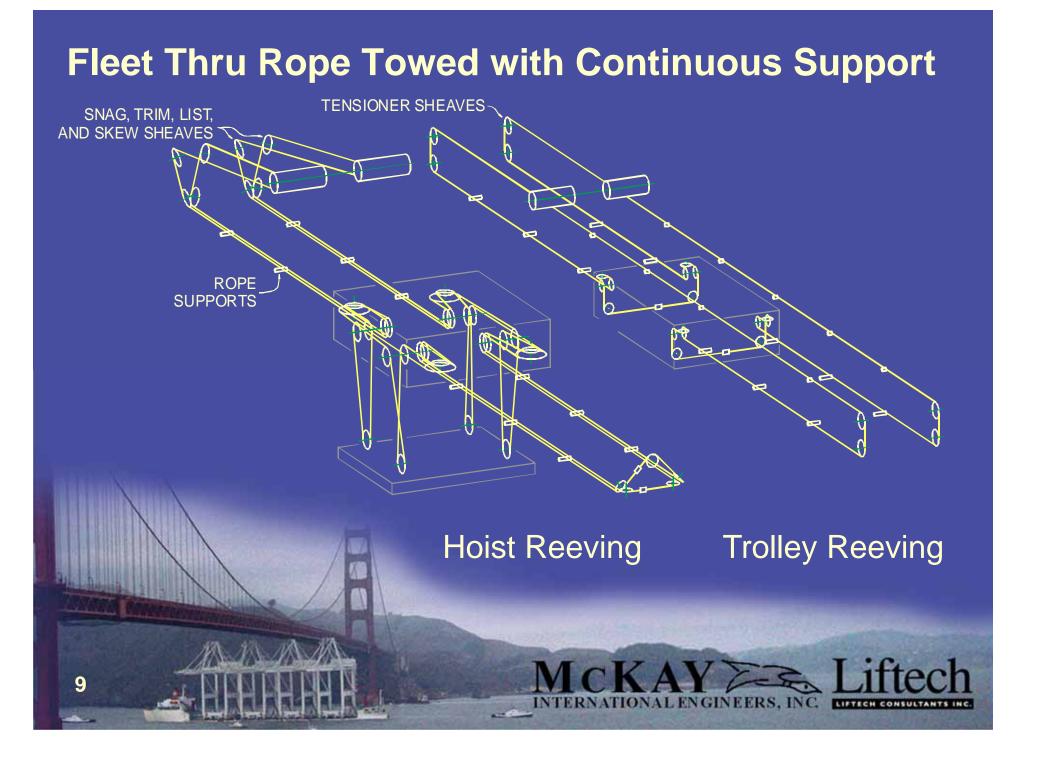

TRIM, LIST, SKEW, ____ AND SNAG SHEAVES

Fleet Thru Rope Towed with Catenary Trolleys

TENSIONER

SHEAVES

• Trolley Reeving


Fleet Thru Rope Towed with Continuous Support

No catenary trolleys or reeving

• Smaller catenaries = more control

• More sheaves = heavier trolley & larger trolley motor

Fleet Thru Rope Towed with Continuous Support

Trolley Types

11

Fleet Thru Self Powered

- Simple reeving
- No trolley tow ropes or tensioner
- Possibility of wheel slip
- Slower acceleration rates

Machinery On Trolley

- Least amount of reeving
- Heaviest trolley

- Possibility of wheel slip
- Slower acceleration rates
- Small machinery room
- Design for maintenance access is important

Rope Towed Machinery On Trolley

Simple reeving

- No concern of wheel slip
- Full acceleration rates
- Requires trolley tow ropes and tensioner
- Design for maintenance access is important

Machinery Area Comparison

Trolley Type Comparison Matrix

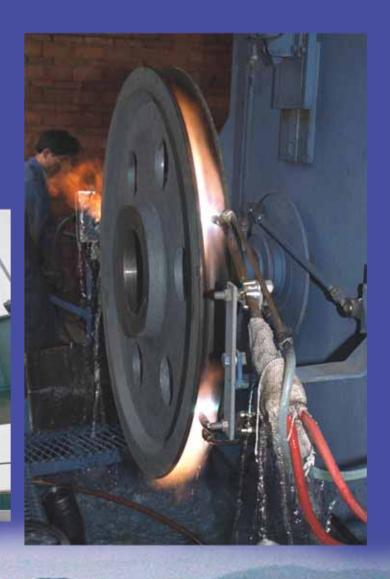
	Fleet Thru Rope Towed Continuous	Fleet Thru Rope Towed Cat. Trolleys	Fleet Thru Self Powered	Machinery On Trolley	Rope Towed Machinery On Trolley
Trolley Weight	Moderate	Lowest	Moderate	Highest	High
Trolley Motors	1	1	2-4	2-4	1
Trolley Motor Power	Moderate	Moderate	Moderate	Highest	High
Trolley Acceleration	High	High	Lowest (Wheel Slip)	Moderate (Wheel Slip)	High
Trolley Tow Ropes, Tensioner, Sheaves	Yes	Yes	No	No	Yes
Catenary Tow Rope, Tensioner, Sheaves	No	Yes	No	No	No
Hoist Rope Length	Long	Long	Long	Short	Short

Trolley Type Comparison Matrix

	Fleet Thru Rope Towed Continuous	Fleet Thru Rope Towed Cat. Trolleys	Fleet Thru Self Powered	Machinery On Trolley	Rope Towed Machinery On Trolley
Approximate Number Of Hoist Sheaves	40	20	20	12	12
Hoist Rope Catenary Support Rollers	Yes	Yes	Yes	No	No
Crane Weight	Moderate	Moderate	Moderate	High	High
Trolley Wheel And Rail Wear	Moderate	Moderate	High	Highest	Above Moderate
Hoist Machinery Access	Good	Good	Good	Limited	Limited
Trolley Drive Machinery Access	Good	Good	Limited	Limited	Good
Trolley Festoon	Light	Light	Moderate	Heaviest	Heavy

Primary Systems

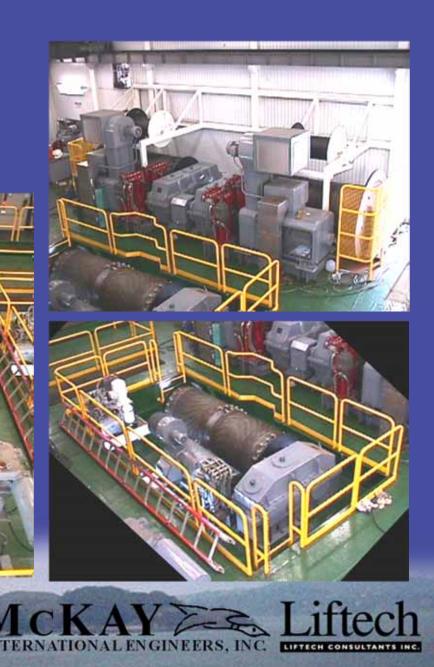
- Reeving
 - Drums
 - Sheaves
 - -Ropes
- Machinery
 - -Gearing
 - Couplings
 - Brakes


- Hydraulics
 - Snag
 - Trim / List / Skew
 - Tensioner

- Gantry Drives
 - Enclosed Gearing
 - Brakes

Reeving

- Cost of rope change
- Rope life extension
- Drum & sheave damage
- Groove hardness
- Tensioner



Machinery

- Simplicity
- Reliability

19

• Ease of maintenance

A 14 .

Gantry Drives and Brakes

- Elimination of open gearing
- Shaft mounted reducers
- Piloted motor mounting

Drives and Controls

- AC vs DC comparison
- Distributed I/O
- Spreader communications
- Crane monitoring systems
- Remote troubleshooting

FEATURE	AC SYSTEM	DC SYSTEM			
Drive System Physical Size	Requires More Space	 Requires Less Space Additional Space Needed for Compensation and Filtering 			
Drive System Weight	Heavier	 Lighter Additional Weight for Compensation and Filtering 			
Typical Cast	 Higher than DC without Filtering and Compensation 	 Lower Than AC if No Filtering And Compensation 			
Typical Cost	 About Same as DC with Filtering and Compensation 	 About Same as AC if Filtering And Compensation 			
Cost Distribution	 Motors 1/3 to 1/2 Inverters 2/3 to 1/2 	 Motors 2/3 to 1/2 Converters 1/3 to 1/2 			

-

LIFTECH CONSULTANTS INC.

Reactive Power Consumption• Low• High • Compensation May Be Necessary Depending on Utility PenaltyShort Time Overload Capacity• 6 to 140 kVA – 160% Average • 215 to 3450 kVA – 135% Avg. • Usually Requires Thermal• Usually 200% • Thermal Sizing Usually Sufficient	FEATURE	AC SYSTEM	DC SYSTEM
Reactive Power Consumption• Low• Compensation May Be Necessary Depending on Utility PenaltyShort Time Overload Capacity• 6 to 140 kVA – 160% Average • 215 to 3450 kVA – 135% Avg. • Usually Requires Thermal• Usually 200% • Thermal Sizing Usually Sufficient	Power Factor		0.1 to 0.8 VariableProportional to Motor Speed
 Short Time Overload Capacity •215 to 3450 kVA – 135% Avg. •Usually Requires Thermal •Usually Constant of the state of th	Power		 Compensation May Be Necessary Depending on
\mathbf{v}	Overload	•215 to 3450 kVA – 135% Avg.	Thermal Sizing Usually
Rating Selection• Selected According to Maximum Torque / Current RequirementSelected According to Ther 	U U U U U U U U U U U U U U U U U U U	Maximum Torque / Current Requirement	Selected According to Thermal Requirement

INTER

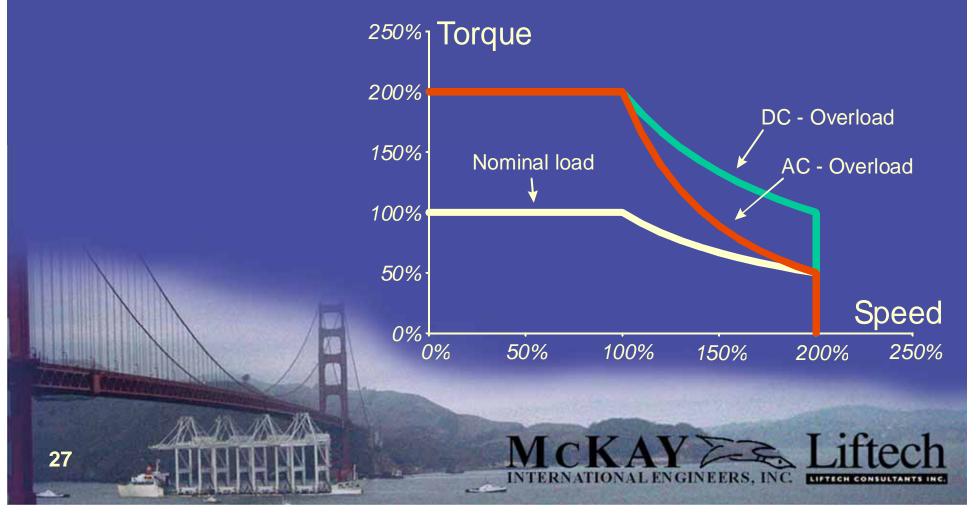
- 2

FEATURE	AC SYSTEM	DC SYSTEM
Total Power Loss	Similar to DC System	Similar to AC System
Typical Power Loss Distribution	 Motor 1/3 in M-House Converter 2/3 in E-House More E-House Cooling Req'd 	 Motor 2/3 in M-House Converter 1/3 in E-House Less E-House Cooling Req'd
Motor Cabling	 Screened Cables Required Length Restrictions Difficulties for Festoon Cabling 	Normal Cables Sufficient
Motors General	Motor is "Short and High" (Constant Speed)	Motor is "Long and Low" (Variable Speed)

FEATURE	AC SYSTEM	DC SYSTEM			
Hoist Motor Inertia	 Higher than DC Less Dynamic Performance Same Performance Needs More Power Risk of Vicious Cycle 	 Lower than AC More Dynamic Performance 			
Hoist Motor Nominal Torque	 Base Speed – 100% Field Weakened Speed – 50% 	 Base Speed – 100% Field Weakened Speed – 50% 			
Hoist Motor Max. Torque	 Base Speed – 200% Field Weakened Speed – 50% 	 Base Speed – 200% Field Weakened Speed – 100% 			

AC Summary

26

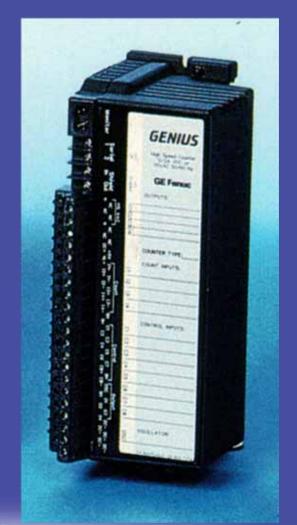

- Lower motor maintenance
- Higher rotational inertia
- Improved inherent power quality
- Larger panels and heat dissipation required

-

DC Summary

- Higher motor maintenance
- Requires equipment for power quality and harmonics
- Traditional hoist performance

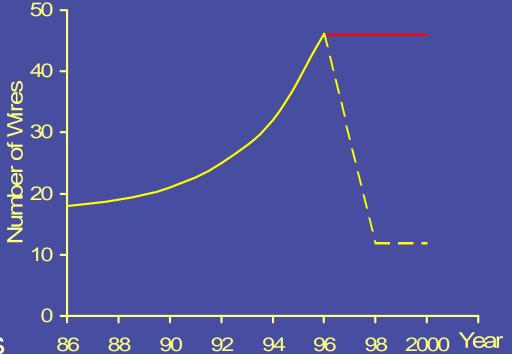
Distributed I/O


- Large amount of information on crane
- Too many signals for discrete wiring
- Distributed I/O nodes networked together
 - Reduces wiring
 - Speeds troubleshooting
- Signals from:

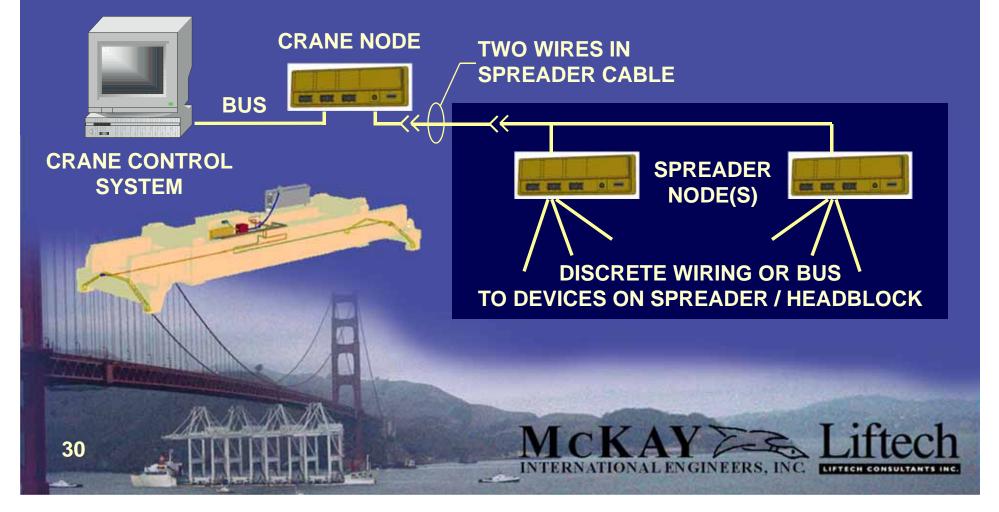
28

- Limit switches
- Push buttons
- Pressure switches
 Photocells

- Signals to:
 - Indicating lights
 - Digital displays
 - Solenoids
 - Relays
 - -Etc...


Industry standard protocols

Spreader Communications


- Increasing amount of I/O necessary for modern spreaders
- Features such as:
 - Twin twenty operation
 - Twin twenty detection
 - -Automatic telescoping
 - Separating twins
 - Fall arrest
 - All require additional I/O
- Reaching the maximum capacity of existing cables

Spreader Communications

- Two standard copper wires to transmit I/O data
- Smaller cable = smaller cable reel
- Bus topology allows for extensive troubleshooting data

Drives and Controls

• Crane Monitoring Systems

Remote (Off-Site) Troubleshooting

Dem	0							Crana	Man			BA GE System
Date	Time	Clo	ss Mess	age	-		-	Grane	man	agen		ystem
	Co	ontrol Powe	er 🚽		Sr	preader		-	Gene	ral	-	
	Status	Off	1	Leng	th	20 Feet		Load	1	****	LT	
	Station	Station		Twis	tlocks	Unlocked		Wind		****	КРН	
				On E	Box	Landed			-			
	D Status	rive Mode	Speed (%)	Torque (%)	Mtr Cu (%)	r HP (%)	Auto Position	Actual Position		Motio missi		Fault #
Hoist	Stopped	I Speed	nnn n	####.#	****	<i>11111 H</i>	uuu u	nnn #	Run	Up	Down	
Trolley	Stopped	Speed	nnn n	1101 JI	####.#	####.#	<i>иии и</i>	nnn 11	Rut	Fwd	Rev	####
Gantry	Stopped	I Speed	unu u	####.#	****	<i>11111 11</i>		1	Run	Left	Right	
Boom	Stopped	Speed	aaa 4	#### #	#### #	11111 N		****	Run	Up	Down	####
CatTri	Stopped	I Speed	****	nnn n	****	HHH H	111111.11	####.#	Run	Fwd	Rev	####
Monitor	Alarms	Productio	n Maint.	Drive	PLC	Power	Document	Trend	Exit	Cri		ANANANA NA NA

Crane Power Supply Options

	Cable Reel	Conductor Bars	Diesel					
Power	Cable	Collector	Fuel					
Communications With Terminal	Fiber Optics / Radio	Radio / Wave Guide	Radio					
Initial Cost of Crane	Moderate	Low	High					
Initial Cost of Wharf	Low	Moderate	None					
Operating Costs	Low	Low	Very High					
Potential Problems	Cable Damage & Replacement Cost	Safety & Conductor Maintenance	Maintenance & Pollution					
Supply Voltage	5 to 15 kV	5 to 15 kV	< 600 V					
32 MCKAY The Liftech								

INI

-

LIFTECH CONSULTANTS INC.

Operating and Safety Features

• Snag device

- Fail safe design philosophy
- Verification of redundant systems
- Operation and maintenance safety
- Additional operating and safety features

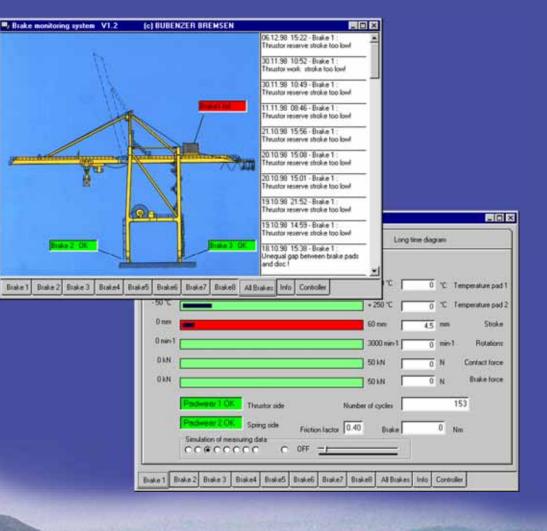
Snag Device

• Hydraulic

34

- Powered reset
- Flow rate must accommodate main hoist speed
- Cylinder stroke sized to absorb kinetic energy of rotating equipment

Snag Device


Fail Safe Design Philosophy

- Safety systems and components are single failure proof
 - Components must fail to a safe state
 - Redundant systems used where can not fail to safe state
 - Redundant high speed braking on main hoist motors
 - Redundant braking on main hoist and boom hoist drums
- Systems and devices must not change state during power up

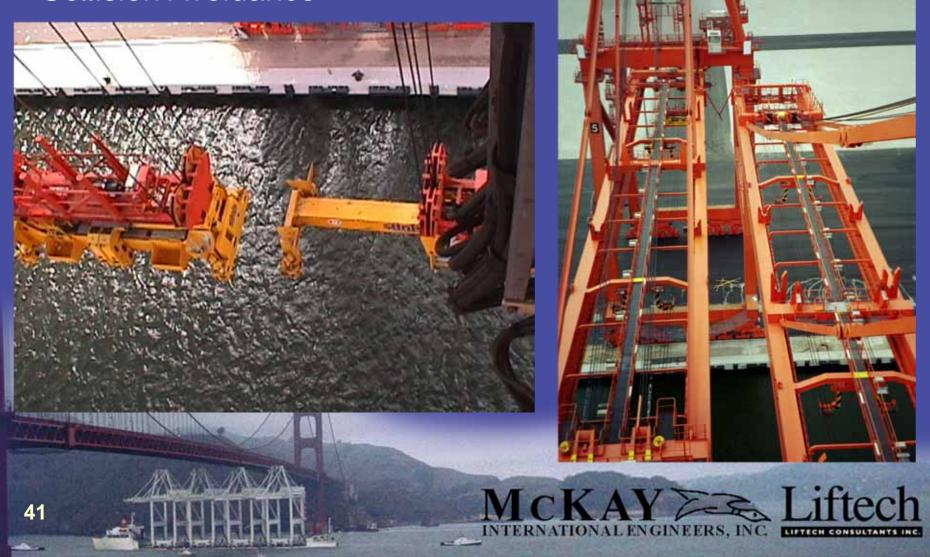
Verification of Redundant Systems

- Brake Torque
- Snag Relief Valves
- Self Diagnostics

Operation & Maintenance Safety

- Lock-Out / Tag-Out
- Hazard signs

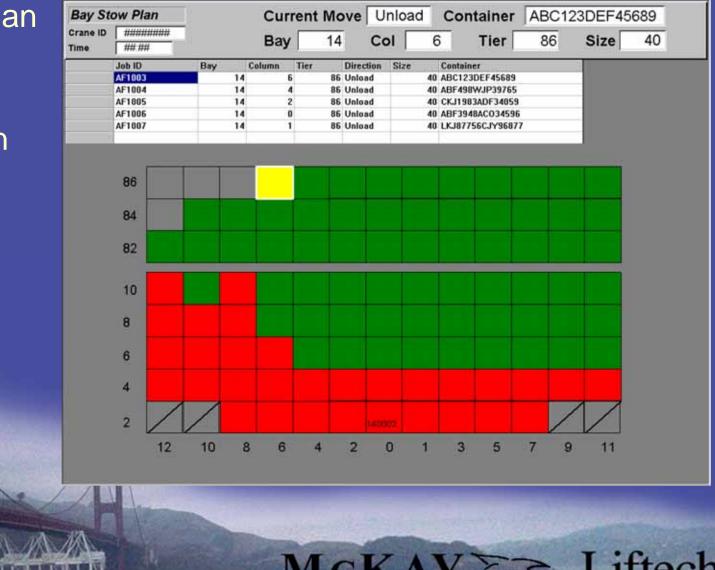
- Means to check redundant systems
- Maintenance mode
- Safe access for maintenance


Additional Operating & Safety Features

- Hoist "two blocking" crumple zone
- Operator seatbelts
- Self rescuing elevator
- Two means of exit from enclosed spaces
- Stairs vs ladders for access
- Boom hoist redundant brake
- Main hoist redundant braking

 Crane to Crane Coordination and Collision Avoidance

• Twin Twenty / Twin Forty Spreaders


- CCTV Displays for Operator
- Chassis Positioning Systems

- Stowage Plan Systems
- Container Recognition Systems

44

INTERN

- 12

INGINEERS, INC.

LIFTECH CONSULTANTS INC.

Specifications & Standards

- Standard specifications cover standard cranes, not *container* cranes
- Container cranes are unique for many reasons
 - Eccentric loads
 - High speeds

- Heavy duty cycles
- Very high reliability requirements
- Standards and specifications must be interpreted by experienced engineers

Specifications & Standards

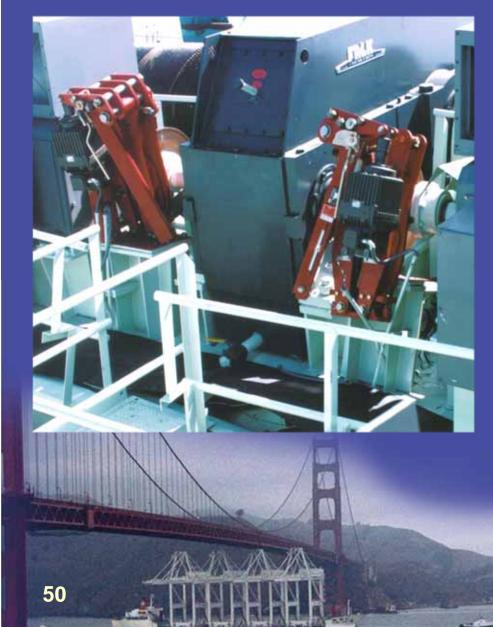
Specifications & Standards

Design & Manufacturing

• Goals:

- High reliability
- Low maintenance cost
- Lowest total acquisition cost
- Total acquisition cost:
 - Purchase price
 - Design and manufacturing review costs to get high reliability and low maintenance

Design & Manufacturing


Good Design:

- Requires design experience
- Meets crane codes worldwide
- Provides crane reliability
- Minimizes maintenance

Design & Manufacturing

- Low price is associated with:
 - Poor design
 - Inferior components
 - Low reliability
 - High maintenance
- High price is associated with:
 - Good design
 - Superior components
 - High reliability
 - Low maintenance

Summary

- Crane systems and components are being refined to:
 - Improve performance and productivity
 - Improve reliability
 - Improve maintainability
- Be sure to specify what you want in a crane:
 - Size and speeds
 - Systems and components
 - Safety and maintenance requirements

End of Mechanical / Electrical Presentation • Comments • Questions

Copyright 2001 by Liftech Consultants Inc. All rights reserved.

This material may not be duplicated without the written consent of Liftech Consultants Inc., except in the form of excerpts or quotations for the purposes of review.

The information included in this presentation may not be altered, copied, or used for any other project without written authorization from Liftech Consultants Inc. Anyone making use of the information assumes all liability arising from such use.

