Liftech Consultants Inc. is a consulting engineering firm, founded in 1964, with special expertise in the design and procurement of dockside container handling cranes and other complex structures. Our experience includes structural design for wharves and wharf structures, heavy lift structures, buildings, container yard structures, and container handling equipment.

Anna is a registered structural engineer in California with experience in the design and analysis of various steel and concrete structures. Her focus is on ship-to-shore cranes and other structures that reside next to, in, or on top of the water, such as heavy lift and container handling equipment, wharves, and floating cranes. She likes earthquake and fatigue engineering topics and working with clients.
Topics

Ship-to-shore crane types
Low profile crane boom weight
Crane loads on wharf
Case study: New low profile cranes and infrastructure upgrade for Port Everglades

Summary

This is a special topic because low profile cranes are only required at ports that are close to an airfield and have strict height limitations. Low profile cranes have needs beyond a typical ship-to-shore (STS) crane, and existing infrastructure may not be able to support them.

This presentation discusses the features of low profile cranes compared to other types of cranes, the effects on the infrastructure, and an ongoing project at Port Everglades in Florida.
There are three types of STS crane. The heights shown are for the same lift height and outreach. However, the rail spans are not necessarily the same.

A-frame: Single hinge, rotates up for stowage or ship passing. This crane is the most common and most economical.

Articulated Boom: Double-hinge, rotates in two segments. This crane is somewhere in between, when it comes to cost.

Low Profile: Boom shuttles back and forth. It has the smallest overall height for the given lift height, but it is 30 to 40% more expensive and has the largest wharf loads.
This figure shows the low profile crane boom positions. The top is the boom retracted, or back over the land, and the bottom is the boom extended, or out over the water.

The boom on these cranes is at least 25% to 30% of the total weight of the crane, weighing around 1,300 k (600 t). So when the boom shuttles back and out, the CG shifts significantly, about 150 ft (50 m) or more. The shift reduces the crane’s stability, which we can address with a wide rail gage, a lot of ballast, or, if the port allows it, the boom can also be stowed for storm wind in the centered position. What does this mean for the wharf structure?
This table shows a sample comparison of wheel loads for an A-frame crane and a low profile crane. The two have similar stowed wind criteria, lift heights, and outreaches, but the gage is 100 ft (30.48 m) for the A-frame crane and 120 ft (36.58 m) for the low profile crane. The low profile crane boom is stowed centered to reduce ballast and stowage loads.

Please note:

1. Green: The low profile crane weight is approximately 1/3 greater than for the typical A-frame crane.
2. Red: The landside operating and stowed wheel loads are more than 40% greater for the low profile crane.
3. Red: The waterside operating wheel loads are more than 15% greater.
4. Blue: The tie-down loads are somewhat skewed because of the boom being stowed centered, but if the boom cannot be stowed at the centered position, the waterside tie-down loads may be 50% greater.

The low profile crane loads have a significant impact on the design of the wharf structures including crane rails, girders, piles, crane stops, and crane stowage hardware. Chances are that any existing infrastructure is not going to be adequate to support the crane and its loads.
Case Study: New Low-Profile Cranes and Infrastructure for Port Everglades, Florida (PED)

Port Everglades master plan
Existing facility
Planned facility
New cranes and infrastructure
Wharf and crane rails
Infrastructure phasing
Girder construction sequence
Construction challenges

A great example is at Port Everglades in Florida, also known as Port Everglades Department of Broward County or PED.

PED is a busy port and they are getting busier. They decided to increase their capacity by purchasing new, large low profile cranes to supplement their existing cranes. The port is in the flight path of the Fort Lauderdale airport.

The next topics include:

The planned facility to support the new cranes.
The new cranes and infrastructure.
How we addressed the challenges associated with major infrastructure work at a busy port.
This is a comparison of the existing and planned facilities. The port will procure new cranes, build new infrastructure, and add new berths by extending the turning notch.

The project is broken into two design parts:

Crane Rail Project, designed by Liftech Consultants. This includes procuring new cranes, upgrading existing cranes, and designing new crane rail girders and piling. Existing cranes are shown in red and new cranes are shown in blue. We will focus on this portion of the project.

Turning Notch Project, designed by Louis Berger. This involves turning notch dredging and the new wharf.

Moss/Kiewit is the contractor for both parts of the project.
Existing Facility

Multiple tenants

Four container berths

Seven low profile cranes
 16 containers wide
 151 ft overall height
 100 ft gage
4,160 V utility power

There are four container berths:

Berths 31-33: 2,800 ft (850 m)
Berth 30: 900 ft (274 m)

B30 and B31 are connected by a curved rail.

Seven low profile cranes:

Post-Panamax ,16 containers wide
Rail gage: 100 ft (30.45 m)
Capacity: 40 LT (41 t)
Overall height: 151 ft (46 m)

Three cranes can go around the curved rail.

The cranes run off 4160 V utility power, which is converted from the terminal supply of 13.2 kV by transformers and switchgears in the switchgear building. The electricity is carried to vaults at the waterside rail by a system of duct banks. Then cables carry it from the vaults to the cranes. The cranes have a spool of cable that unreels into a pocket in the wharf.
The port is purchasing six new cranes, shown in blue. The existing cranes are shown in red.

The crane girders on B30 will be extended by 1,500 ft (460 m). Approximately 3,500 ft (1,070 m) of crane girders for the new cranes will be added on the B32 through B30 extension. The curved rail is being demolished in some parts.

The new cranes will run off 13.2 kV utility power, so there is no need for step-down transformers, but the existing electrical infrastructure is inadequate. The plan is to add the following:

- A new substation (not shown)
- A new switchgear building
- 7,000 ft (2,130 m) of duct banks
- Six strategically placed electrical vaults and cables
New Cranes and Infrastructure

New low profile cranes

- 15,000 TEU vessels, 22 containers wide
- FAA aviation clearance 175 ft

New crane girders – 120 ft gage

The new cranes:

- Can serve 15,000 TEU vessels with 22 containers wide
- Overall height 175 ft (53.3 m), which is an increase recently approved by the FAA
- Capacity: 65 LT (66 tonne)
- Rail gage: 120 ft (36.58 m)

The 120-ft gage has the following benefits:

- It was not practical to retrofit the existing crane girders to handle the new crane loads.
- The new crane has better stability and smaller loads with a wider gage.
- Most importantly, without disturbing the existing girders, the port can maintain its operations.
Wharf and Crane Rails: Existing Section

The existing wharf structure is made up of sheet pile bulkhead with tie rods connected to a sheet pile anchor wall.

The crane girders are reinforced concrete supported by auger piles.

There are steel H-piles at the fenders.

The existing cranes run on 171 lb crane rails.
The new crane girders are shown in red. They consist of reinforced concrete girders and auger piles.

The new girders are offset 10 ft (3.0 m) and 30 ft (9.1 m) back from the existing rails. The pile layout needed to avoid the existing battered piles, the tie rods, and other electrical and civil lines. This was most difficult on the waterside, as you can see in this drawing.

Other upgrades include:

- A larger crane rail size—A150
- A new set of transponders to measure crane position along the wharf
- New stowage hardware
- New crane stops that were designed to tip the crane with the boom fully retracted or fully extended
Now we’ll spend some time talking about the construction side of the project. As previously mentioned, PED is an active and busy port, and they need to maintain their operations through several years of new project construction.

The infrastructure project was broken into three phases:

Phase 1 is shown in red. This phase includes building new 120-ft (36.58 m) gage rail girders for B31 and B32 and adding a new switchgear building. This phase is still in progress. After this phase is complete, the new cranes will arrive and begin operation, and then the port will start to release the existing cranes for upgrade.

Phase 2 is shown in green. This phase includes building new 100-ft (30.48 m) gage and 120-ft gage rail girders for B30 Extension. This work overlaps with the Turning Notch Project. After Phase 2 is complete, two of the existing cranes will be moved to the B30 Extension and the port will release B30 for phase 3 work.

Phase 3 is shown in blue. This phase consists of building the remaining new 120-ft gage rail girders for B30.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Summary</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>B31 and B32: New 120 ft gage rail girders, new switchgear building, 13.2 kV power – terminal operations must continue</td>
<td>75% complete May 2020</td>
</tr>
<tr>
<td>Phase 2</td>
<td>B30 Extension: New rail girders (100 ft gage and 120 ft gage) and 13.2 kV infrastructure after Turning Notch bulkhead completed – minimal impact on terminal operations</td>
<td>Nov. 2019 – Mar. 2021</td>
</tr>
</tbody>
</table>
B31-B32 Rail Girder Construction Sequence

Drive auger piles and construct rail girders in segments

Cranes able to move past active segments

Suspend construction periodically if required

Continue terminal operations in other areas

This is a breakdown of the construction sequence for Phase 1. B31 and B32 are broken into five segments. The port releases one segment at a time for construction. During construction, cranes can pass the active segment.

Segment 1 is completed and Segment 2 is currently active. Segment 1 is longer than the other segments. It is 600 ft long, in part to berth and serve a small vessel while Segment 2 is active. The sequencing helps minimize disruptions to the port.
Notice that the existing rails (in blue) are untouched and clear of equipment. The new rail girders, being built, are shown in red.
There were a few construction challenges that needed to be addressed. This is by no means an exhaustive list.

1. The design work on the B30 Extension was an overlap of the two engineering firms. There was extensive coordination among the teams, the tenants, and the port.

2. Coordinating construction – The CM at Risk and the CM reviewed design contracts and provided comments on the construction plans.

3. Minimizing disruptions to port operations - The primary solutions were offsetting the new crane rails, keeping the existing rails clear, and careful planning and phasing work.

4. Even with all the planning, there were still some unexpected disruptions. For example, during auger pile drilling the cranes were passing the active segment more often than expected, and every time the crane passed, the drill rig needed to be moved. To address that, there were weekly coordination meetings with the port, the CM, the engineer, and the port tenants.
Summary

Low profile cranes may be required if aviation clearances are limited
Low profile cranes are expensive and impart high loads on the wharf structure
Existing infrastructure may be inadequate
Port Everglades case study:
 New cranes are taller and heavier than existing cranes and serve larger vessels
 Existing crane girders are not suitable for new cranes
 New, offset wharf girders and new electrical infrastructure are required
 Careful construction phasing, coordination with port tenants, and keeping stakeholders informed reduced terminal disruptions

Sometimes low profile cranes are required to meet the geometric requirements of the port; but they are expensive, heavy, and often need new infrastructure to support them.

Port Everglades needed to upgrade the infrastructure, which could have meant major disruptions to their daily operations. With careful design, planning, and coordination, PED is able to keep operating throughout the construction schedule, which is still ongoing as of this presentation (in September 2019).
I would like to thank Arun Bhimani of Liftech and Claude Gentil, PE, Port Everglades for their significant contributions to the paper and presentation.